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In the solution of optimization problems of the internal structure of elastic composites 
in the plane stress state, these latter were considered either as homogeneous anisotropic 
[i] or as a filamentary continuum [2, 3]. The condition of equal intensity of the armature 
fibers was the fundamental criterion for optimality in [4, 5]. 

On the basis of a model of a bonded layer proposed in [6], the problem of selecting 
the bonding direction and intensity corresponding to the minimum total armature volume in 
elastic plates loaded in their plane is examined in this paper. It is shown that designs 
with an equally stressed armature whose bonding directions are simultaneously the directions 
of the principal elongations will be optimal in the sense mentioned. Equations and boundary 
conditions are obtained that determine the bonding parameters of the optimal design. A re- 
lation is established between the optimal bonding trajectories and the slip lines for plane 
strain of a rigidly plastic body. 

1. A plate is considered that consists of an isotropic matrix and a thin-fiber arma- 
ture inserted in it, which is laid out in two directions forming the angles a k with the posi- 
tive direction 1 of a certain orthogonal coordinate system xz, x2. It is assumed that the 
plate has a constant unit thickness, is loaded in its plane by forces Pi on a part of the 
contour Lp, and is clamped rigidly on the remaining part of the contour L u. There are no 
bulk forces. Both phases of the composite are considered linearly elastic, where the arma- 
ture stiffness is considerably above the stiffness of the matrix. The bonding directions 
and intensities can vary independently. 

The following relationships are taken as the mechanical model of the composite, where 
the averaged stresses o~j are connected to the structural stresses oil in the matrix, o k 
in the armature, and the directions a k and intensities u k of the bonding [6]: 

"~j= (i--~)a~§ %'kZ~tj~ ( l , / , ~ =  t,2), (1.1) 
where ~ = e~ + ~s; Ilk = r 12k = sin ~k, Here and henceforth, stmmmtion is over repeated sub- 
scripts. 

The bonding intensities should satisfy the natural constraints 

ek>0 (k=i, 2), e~,, (1.2) 

where e. < i is the ultimately achievable value of the total bonding intensity. 

The structural stresses are related to the strains r of the composite by Hooke's law 

EF~ Ewl 
"11 = i -  v'  (91 + w:J, % = ~ ~l~' 

E~ 

"k = g ~ k  : EaeljliklJk ( i , j ,k  = t, 2). 

Here E a, E m are the Young's modulus of the armature and matrix, and ~ is the Poisson ratio 
of the matrix. 

Let us consider the problem of determining the scheme for stowing the armature in the 
plate, which will correspond the the minimum total armature volume among all allowable de- 
signs. All possible plate designs satisfying the same boundary conditions and having an 
elastic pliability value measured as the work of the external forces on the displacements 
they produce, which do not exceed a given value Jo are allowed in the comparison: 
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Such designs will later be called allowable. 

Let us show that among all allowable designs of a plate bonded by two families of fi- 
bers, the least total armature volume will be possessedby designs with a~ equally stressed 
armature lald out along the trajectories of the principal elongations of the composite, and 
having the limit value Jo for the elastic pliability. Such designs will later be called 
optimal. Going from integration over the contour to integration over the domain S occupied 
by the middle plane of the plate by using Green's formula in (1.5), and using the relation- 
ship (i.i) here, the elastic pliability of the optimal and the arbitrarily allowed designs 
can be represented in the form 

Here and henceforth, all the quantities with asterisks correspond to the arbitrary allowable 
design, and without the asterisk, to the optimal design. 

We now apply the principle of virtual work to the arbitrary allowable design by taking 
the real displacement field of the optimal design as the virtual displacement field: 

Here e~ is the virtual elongation in the directions of stowing the armature of the arbitrary 
allowable design, calculated according to the real displacement field of the optimal design. 

By using the relationships (1.4), (1.6), (1.8) and the easily verifiable 

* "8 u ~ i j  = a U i  j 

the inequality (1.7) can be converted into the following: 

~ s i j  - 81j ) d~ + E~ , s 

Since the difference in the stresses oiJ , oij and strains E~j-- ~ij are related by Hooke's 
law (1.3), while the bondin 8 intensities of any allowable design satisfy the constraints (1.2), 
then under the additional condition c~ = ~ all the components in the right side of (1.9) 
are nonnegative. Since the armature in the optimal design is equally stressed and lald out 
along the trajectories of theprincipal elongations, then taking (1.3) into account, the in- 
equality (1.9) becomes 

(k= i, 2), 

where  E~, , = 2Era~( ~ • v)E a. 

Here V a and V~ are the total armature objects of the optimal and arbitrary allowable de- 
signs, E~ corresponds to optimal designs with armature elongatidns e~ =--ca (optimal designs 
of the first kind), and E2 corresponds to designs with armature elongations c~ = E2 (optimal 
designs of the second kind). 

The condition E k < 1 therefore assures ghat optimal designs possess plates of minimal 
armature volume among all the allowable designs. Since the optimal designs of the second 
kind are in a homogeneous deformed state, they can only be realized in cases when the bound- 
ary conditions on the plate contour are given instresses. As will be shown below, the con- 
dition of rigid clamping of the plate on the contour L u permits the unique construction of 
optimal designs of the first kind. 

2. Since the bonding directions of an optimal design of the first kind are mutually 

756 



orthogonal, then it is possible to set a l  = =~--=12 = =. Let u, v be the displacement com- 
ponents in the directions of the x, y axes of a Cartesian rectangular coordinate system. 
Then the strain and rotation components of an optimal design of the first kind can be rep- 
resented in the form 

~x ~ Ou/Oz = ez cos 2~t, ey = Ov/Oy = --81 cos 2a ,  

= (t12)(Ov/Ox -]- OulOy) = s 1 s in  2a ,  Q = (l12)(OvlOx -- Ou/Oy). 

(2.1) 

Eliminating u and v from (2.1) by using cross differentiation, we obtain a system of 
equations governing the bonding directions of the optimal design of the first kind: 

O~lOx - -  2el(cos 2aOa/Ox -4- sin 2r = O, 

OQlOy - -  2sl(s in 2otOa/Ox --  cos 2ctOczlOy) = O. 

(2.2) 

The system (2.2) is hyperbolic, where its characteristic directions are in agreement 
with the bonding directions. As is easily noted, the system (2.2) is identical to the funda- 
mental equations to the theory of plane strain of a rigidly plastic body [7]. Therefore, 
the bonding trajectories of an optimal design of the first kind agree geometrically with the 
slip lines of a certain Hencke--Prandtl grid, and possess all the known properties of these 
latter. The most essential of these properties are formulated in Hencke theorems [7]. Ana- 
logs of the first and second Hencke theorems are the following assertions: i) Upon going 
from one fiber to another of the same family along any fiber of the other family, the angle 
a varies by the very same quantity; 2) for motion along a fixed fiber the radii of curvature 
of fibers of the other family vary within the distance traversed. On the basis of the for- 
mulated theorems, the system (2.2) can be replaced by another system more convenient for nu- 
merical.computations [8]: 

dRz @ R l d ~ =  O, dR 1 - -  Rzdo~= O. ( 2 , 3 )  

Here RI, R2 are the radii of curvature of the first and second family fibers. Equations (2.3) 
are valid along the first and second family fibers, respectively. 

If the angle a is determined, then the bonding trajectories are found from solution 
of the equations 

d y / d z =  ~ a, dy /dx= - - c t g = ,  ( 2 , 4 )  

which are valid along the first and second family fibers, respectively. By introducing the 
auxiliary variables 

= x cos J +  y s in  ~, y =  - - x  s in  ~ + y cos a ( 2 . 5 )  

the equations (2.4) can be represented in a more convenient form for numerical computations 

d y + ~ d a  = O, d~ - - y d =  = O ,  ( 2 . 6 )  

which are valid along the first and second family fibers, respectively. 

The average stresses in the optimal design of the first kind can be represented by vir- 
tue of the relationships (i.i), (1.3), (1.4), and (2.1), in the form 

where 

i 
c __ _~_ ~1 (X ~- z cos 2r 

c t c t 
au = ~ ~z (X - -  z cos 2~) ,  ~xy = y crlz s in  2~,  

.~ = ~i - ms, x = El + (I -- E1)m 

Substituting (2.7) into the equilibrium equations 

(2.7) 

(2.8) 

c c 0 c  ~ c  

~+-W-y =o,-~-~=o 

results in the following system of equations 
OX . 0 0 
7 z  -f- " ~  (x cos 2r + ~ (• s in  2r = O, 

(2.9) 

(2.10) 
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�88 a-~ + (x sin 2~) - (~ ~os 2~) = 0, 

w h i c h  i s  h y p e r b o l i c  w i t h  c h a r a c t e r i s t i c s  t h a t  a r e  i n  a g r e e m e n t  w i t h  t h e  b o n d i n g  t r a j e c t o r i e s .  
For numerical computations, a more convenient form of (2.10) is written along the first and 
second family fibers, respectively 

R,~(X + ~) -- 2xR,~=0, R1d(~ -- ~) -- 2~R,d~ = O. (2.11) 

On the basis of analogs of the Hencke theorems and the definitions of the bonding in- 
tensities [6], these latter can be represented in the form 

~, =--ASJR,I ~ = --AS,/R,, (2.12) 

where Sx and Sa are the areas of the first and second family fiber cross-sectlons, and A is 
a positive constant whose value is not essential in the present consideration. Taking ac- 
count of (2.8) and (2.12), the equations (2.11) can be transformed in the case E, = 0 into 
the form 

dS, -- S2d== O, dS~ + $id~ = O. (2.13) 

A deduction can be made from an analysis of Eqs. (2.13), which are valid along the first and 
second family fibers, respectively, that in the case E, ffi 0 the cross-sectlonal areas of the 
armature fibers decrease monotonically with motion along the fiber towards divergence. Be- 
cause of the continuous dependence of the solution of the problem under consideration on the 
input data, the assertion formulated remains valid even for sufficiently small values of E, 
>0. 

The boundary conditions formulated at the beginning of Sec. 1 can be reformulated in 
terms of the functions introduced above. Because of the rigid clamping of the plate along 
the contour Lu, we obtain the following boundary conditions for the system (2.2) on this 
contour 

= ~ • ~14+ n~, n = •  (2.14) 

where ~ is the angle between the external normal to L u and the x axis, and n is an arbitrary 
integer. If the boundary conditions (2.14) are compared with formulas (35.4) from [7], then 
it can be noted that the Cauchy problem for the system (2.2) with the boundary conditions 
(2.14) is completely analogous to the problem of plane strain for a rigidly plastic body 
with load-free boundaries of the same shape as the contour L u. The field of sllp lines of 
this problem, meaning the field of bonding trajectories of an optimal design of the first 
kind, can be constructed by well-known methods [7, 8]. Since only parameters of the contour 
L u are in the boundary conditions (2.14), the bonding trajectories of the optimal de- 
sign of the first kind depend only on the shape of L u. The selection of the signs in (2.14) 
does not influence the geometry of the bonding trajectories, but only establishes which of 
the fiber families works under tension, and which under compression, and should be in agree- 
ment with the kind of loads applied to L D. If L u is a closed 6 smooth, convex contour, then 
as is shown in [9], the field of slip lihes and perhaps even the field of bonding trajec- 
tories outside the contour L u are formed by spiral curves that diverge with distance from 
Lu, and can be continued as far from L u as desired. If it turns out here that the contour 
~on which the loads are given does not have the characteristic direction anywhere, and 
intersects each characteristic just once, then the Cauchy problem for the system (2,10) will 
be correct. Let the normal pressure o and the tangential stress T be given on the contour 
Lp| then by virtue of (2.7), the boundary conditions on the contour Lp can be written in the 

form 

o = (i/2)al[X ~ ~cos2(~ - -  ~) ] ,~  = ( i /2)~xsin2(~ --  ~), ( 2 . 1 5 )  

w h e r e  ~ i s  t h e  a n g l e  b e t w e e n  t h e  e x t e r n a l  n o r m a l  t o  Lp and  t h e  x a x i s .  

Therefore, the problem of construction an optimal design of the first kind is subdivided 
into two stages. The Cauchy problem for the system (2.2) with the boundary conditions (2.14) 
given on the contour L u is solved in the first stage. The solution of this problem determines 
the field of bonding trajectories in the domain S. The Cauchy problem for the system (2.10) 
with the boundary conditions (2.15) given on the contour Lp is solved in the second stage 
for the bonding directions already known. This problem is solved in the direction opposite 
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to the first stage. After it has been solved, all the parameters of the optimal design 
of the first kind become known, it should be kept in mind that the solution constructed 
in this manner has a mechanical meaning only when the inequalities (1.2) are satisfied, 
which impose definite constraints on the external loads a, T. These constraints depend in 
a substantial manner on the shape of the domain S. 

The systems (2.3) and (2.6) are utilized for a numerical construction of the bonding 
trajectories fields. The appropriate values of the radii of fiber curvature Rl and R= on 
the contour L u are defined by the formulas 

Rl  --  -4- 2 Ol ' R~ 2 0 l '  

in which e is the derivative taken with respect to the direction tangent to the contour Lu defined 

by the relationship 

OlOl = --sin r -t- cos r 

The initial conditions for the system (2.6) are determined by the relationships (2.5) 
in which x, y are coordinates of points of the contour L u while the angle a is determined 
from the boundary conditions (2.14). 

3. As the simplest example, we construct an optimal design of the first kind for a 
circular annular plate fastened along the inner circle of radius ro and loaded uniformly 
by loads o, T distributed over the outer circle of radius rx. In this case, two families 
of logarithmic spirals that intersect the radial directions at the angles +_,~/4 will be the 
trajectories of optimal armature layout. If we go over to dimensionless variables 

R = r l r  o, R o = r i l r  o, ~st = ~162 , % = ~ 1 7 6  = 

c C where  o F, %,~7e. a r e  the  a v e r a g e  s t r e s s e s  i n  a p o l a r  ( r ,  0) c o o r d i n a t e  s y s t e m ,  and i f  we con-  
s i d e r  the  e x t e r n a l  l o a d s  a ,  T, a l s o  d i m e n s i o n l e s s  i n  e l ,  t hen  t he  bond ing  i n t e n s i t i e s  of  an 
o p t i m a l  d e s i g n  o f  the  f i r s t  k ind  a r e  d e t e r m i n e d  by the  f o l l o w i n g  

r176 -- t -- E i R" -- ~2- - 

Since the radii of curvature of the logarithmic spirals are Rt = R2 =--R~/~ then ac- 
cording to (2.12) the areas of the armature fiber cross-sections vary as follows: 

The stress state of the design constructed has the form 

The inequalities (1.2) impose the following constraints on the external loads 

I 
I~1 + (i -- ~ )  a > T E~, I ~1 < [E~ + (i -- E,) o),]/2R~. 

(3.1)  

The inequalities (3.1) determine the domain of allowable external load values in the 
plane o, T, which consists of two triangular parts and is symmetric relative to both axes. 
This domain is not empty when the following condition is satisfied 

which determines the maximally allowable relative dimensions of the plate. The total relative 
volume of the armature of the constructed optimal design of the first kind is 

V = o  ~ t  ( 4 l ~ l R ~ l n R ~  - -E t )  " R ~ - l ' '  

4. The method of characteristics with the constant increment Aa between adjacent nodes 
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[8] is utilized in the numerical construction of optimal designs of the first kind. The 
constancy of Aa over the whole field of bonding trajectories is assured by an analog of the 
first Hencke theorem formulated in Sec. 2. The differential equations (2.3), (2.6), and 
(2.11) are replaced by difference equations. For instance, the system (2.6) is replaced by 
the difference equations 

Y,+~,i - vu+~ = (~ j+~ + ~+~,j )A~/2, ( 4 . 1 )  

xi+,j -- xt.$ =(VIj  + Vl+ij) A~/2. 

The following numbering of the mesh nodes is taken here: The first subscript denotes 
the number of the node layer, and the second the number of the node in the layer, where the 
numbering of the nodes in the adjacent layers is selected in such a manner that the nodes 
corresponding to one bonding trajectory of the second family have the very same number J. 
A characteristic fragment of the mesh is shown schematically in Fig. I. The first layer of 
mesh nodes lles in the contour L.. The coordinates of the remaining nodes are not known in 
advance and are determined durin~ the computation. 

The difference equations (4.1) approximate the initial differential equations (2.6) to 
second order accuracy in the mesh spacing ~. Solving (4.1) for the values of the mesh func- 
tions on the (i + l)-th layer, we obtain the following recursion relations 

vt+, j  = AzVtj+I + As(=~j + =tj~l) + Aavtj, 

where AX = (i -- A~9~)-I; As = AxA~/2; Aa = AsA~/2. 

The recursion relations (4.2) permit approximate construction of the bonding trajectory 
mesh for an optimal design of the first kind. Recurslon relations to determine the radii of 
fiber curvature and the bonding intensities are obtained in an analogous manner, and not pre- 
sented here in the interests of saving space. 

Nodes of the bonding trajectory mesh constructed by using the recursion relations (4.2) 
do not generally fall in the contour ~ (see Fig. i). Hence, the following procedure is pro- 
posed for approximate assignment of the initial values • and ~: if two adjacent mesh nodes 
belonging to the very same bonding trajectory lie on different sides of the contour Lp, then 
the point of intersection between this bonding trajectory and the contour Lp is found-by 
using inverse linear interpolation. Considering this point an additional mesh node, we de- 
termine values of the fiber radii of curvature there and the increment in the angle ~ when 
going from the interior node tothe additional node by using linear interpolation. Then by 
using the boundary conditions (2.15) we determine the values of • and ~ at the additional 
node. 

The numerical algorithm described above was used to construct an optimal design of the 
first kind for a circular plate with an eliiptical hole. The plate was loaded by uniformly 
distributed loads o, T along the outer contour Lp and was rigidly clamped along the inner 
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elliptical contour L u. Computations were performed on a BESM-6 computer with mesh spacing Aa ffi 
~/64. The mesh for bonding trajectories of an optimal plate design constructed by using a 
graph-plotter is shown in Fig. 2; the ratio of the L contour axes is 2 while the ratio be- 

semiaxis of the contour L u equals 2.5. Only tween the radius of the contour Lp and themajor u 
each quarter of the mesh lines constructed during the computation is shown here. The domain 
of allowable values of the external loads on the (a, ~) plane, as constructed for v = 0.4, 
Em/E==O,OI , and the maximally allowable total bonding density ~,=0.8 , is represented in Fig. 
3. This domain corresponds to designs in which the tensile fibers are warped counterclock- 
wise. The domain of allowable loads for designs in which the tensile fibers are warped 
clockwise is symmetric with respect to the ~ axis to the domain presented in Fig. 3. Graphs 
of the change in fiber cross-section area are presented in Fig. 4 as a function of their 
running length, as constructed for the external loads o = 0, �9 = 0.012 . It was assumed here 
that the cross-sectional area equals i at the initial point on the contour L u. Curves 1-4 
in Fig. 4 correspond to fibers emerging from the points 1-4 on the contour L u (see Fig. 2) 
and being warped counterclockwise. 

5. Since the strain state of optimal designs of the second kind is homogeneous, the 
equation of strain compatibility is satisfied automatically without imposing any constraints 
on the bonding parameters. To determine the four structural parameters of optimal designs 
of the second kind, only the two equilibrium equations (2.9) remain, which after the relation- 
ships (i.i) with the Hook's law (1.3), (1.4) and the homogeneity of the strain state (~= = % = 
51 = ~2, ~x~ = 0) taken into account have been substituted, take the form 

0 2 0 O 2 0 (t% sin tz, cos E2 0(o 
(5.1) 

# 0 O Oto 
OOx ((~ sin ~1 cos ~z,) + ~ ((oi sin 2 ~, ) + ~z (t~ sin % cos %) -k ~y (co 2 s in '  (z,) - -  e 2 ~ = O. 

Equations (5.1) determine the class of designs that are equivalent in the sense of 
equality of the total armature volume. Since the system (5.1) is not closed, infinitely 
many such designs can be constructed for given boundary conditions. Conditions for the 
technological efficiency in fabrication are drawn upon to extract specific and most prefera- 
ble designs. The most essential are requirements about constancy of the cross-sectional 
area of each individual armature fiber. To establish a relationship between the bonding 
parameters that exist in this case, the vector fields ~k with the components ~hlth(i,k = 1,2, 
no s,-nmation over k) are introduced into the considerations. Let D = S be an arbitrary 
simply-connected domain with the smooth boundary r, while n is the external normal vector 
to F. Then the absolute value of the scalar product ~hn has the meaning of the total cross- 
sectional area of the k-th family fibers passing through unit arclength of the contour F. 
Here ~h n is negative if the fibers enter the domain D and positive if the fibers emerge from 
the domain D. Since the fibers have constant cross-section and cannot be broken off within 
the domain D, then the total cross-sectional area of the fibers entering D equals the total 
cross-sectional area of the fibers emerging from D, i.e., 

.fa)kndl=S~divto~ds=O (k= l, 2). ( 5 . 2 )  
P D 
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Fig. 5 

Here the Gauss-Ostrogradskli formula is used to go from integration over the contour 
r to integratlon over the domain D. Because of the arbitrariness of the domain D it follows 
from (5.2) that 

(5 .3) @Z 

If the operators of differentiation with respect to the directions parallel and orthog- 
onal to the k-th family fibers are introduced 

8181~ = cos~k~lgz + sin =k~/ay, ~l~"k = --sin =k~/~ + cos~ka/~y, 

then the system (5.1), (5.3) can be written in the form 

~, sin ~0~i/~I , + E~O~/Ol2 = O, 0~,/~11 + ~,0~I/0,~, = O, (5 �9 4) 

~n sin ~8~21als -- Ei~lal, = 0, 8~I~II + ~na~il0ns = 0, 

where s=~,--~2 �9 

The system (5.4) Belongs to the elliptic type and determines the Bonding directions 
and intensities of optimal designs of the second kind with fibers of constant cross-section. 

Wepresent the bonding trajectories of a clrcular annular plate with relatlve dimension 
Ro " 5, loaded By normal loads p and q distributed uniformly over the outer and inner con- 
tours as the simplest example of anoptlmal design of the second kind. Omitting the details, 
we Just note that the bonding directions are determined in this case from the solutions of 
the equation 

(w + Es)dw/dR + (2w/R)(w -- i + E,)= O, (5.5) 

where w == cos'=; ~ is the angle between the fibers and the radial directions. Solutions of 
(5.5) emerge rapidly onto the asymptotic regime w = 1 -- Ea as R grows, i.e., for sufficient 
distance from the inner contour of the plate the bonding trajectories asymptotically approach 
logarithmic spirals that intersect the radial directions at the angles • arccos ~I --E~. 
Bonding trajectories are shown in Fig. 5 for an optimal design of the second kind constructed 
by a numerical method for the following values of the input parameters E2 = 0.1, q = 0.2, and 
p = 0.15. 

i. 
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3. 

4. 
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